im钱包官方网站
数字资产服务平台

im钱包官方网站是全球著名的数字资产交易平台之一,主要面向全球用户提供比特币、莱特币、以太币等数字资产的币币和衍生品交易服务。

比特派官网app|网卡ethernet

时间:2024-03-14 19:14:31

Ethernet(以太网)基本工作原理 - 知乎

Ethernet(以太网)基本工作原理 - 知乎切换模式写文章登录/注册Ethernet(以太网)基本工作原理乐竹每天提醒自己,不要忘记梦想!以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)Ethernet 数据发送流程CMSA/CD的发送流程可以简单概况为4步:先听后发、边听边发、冲突停止、延迟重发。(1)载波侦听过程每个主机在发送数据帧之前,首先要侦听总线的【忙/闲】状态。Ethernet网卡的收发器一直在接收总线上的信号,如果总线上有其他主机发送的信号,那么曼彻斯特解码器的解码时钟一直有输出;如果总线上没有信号发送,那么曼彻斯特(Manchester)解码器的时钟输出为0。Manchester解码器是网卡上的一个组件,解码时钟会根据线路上的信号以曼彻斯特编码解码。曼彻斯特编码因此,Manchester解码器的时钟信号可以反映出总线的【忙/闲】状态。(2)冲突检测方法载波侦听并不能完全消除冲突。———————————————————————————————————————电磁波在同轴电缆中传播速度约为 2×108m/s,如果局域网中两个【相隔最远】主机A和B相距 1000m,那主机A向主机B发送一帧数据要经过。t=\frac{1000}{2\times10^{8}}=5\times10^{-6} s=5\mu s 主机A发送数据后,要经过t后,主机B才接收到这个数据帧。在这5μs的时间内,主机B不知道主机A已经发送数据,它就有可能也向主机A发送数据。出现这种情况,主机A和主机B的这次发送就发生【冲突】。———————————————————————————————————————比较极端的冲突是:主机A向主机B发送数据,当数据信号快要到达主机B时,主机B也发送了数据。等到冲突信号传送回主机A时,已经经过了两倍的传播延迟2t(t=D/V,D为总线传输介质的最大长度,V是电磁波在介质中的传播速度)。冲突的数据帧可以传遍整个缆段,缆段上的主机都可以检测到冲突。缆段被称为【冲突域】,如果超过2t的时间没有检测出冲突,则该主机已取得【总线访问权】,因此将 2t定义为【冲突窗口】。冲突窗口是连接在一个缆段上所有主机能检测到冲突发生的最短时间。由于Ethernet物理层协议规定了总线最大长度,电磁波在介质中的传播速度是确定的,因此冲突窗口的大小也是确定的。最小帧长度与总线长度、发送速率之间的关系———————————————————————————————————————为了保证主机在发送一帧的过程可以检测到冲突,就要求发送一个最短帧的时间要超过冲突窗口的时间。因为帧发送并不是一瞬间全部发送完成,发送延迟 t = 帧长度/发送速率,发送速率一般不会改变,因此要在发送的过程中能检测到冲突需要规定一个最小帧长度最短帧长度为 L_{min} ,主机发送速率为S,发送短帧所需的时间为 L_{min} / S ,冲突窗口的值为2D/V \frac{L_{min}}{S}\geq \frac{2D}{V} 所以可以根据总线长度、发送速率和电磁波传播速度估计最小帧长度。———————————————————————————————————————冲突是指总线上同时出现两个或两个以上的发送信号,它们叠加后的信号波形不等于任何一个主机输出的信号波形。冲突检测有两种方法:比较法 和 编码违例判决法。比较法:主机在发送帧的同时,将其发送信号波形与总线上接收到的信号波形进行比较(信号在总线上是双向传播的,比如主机A、B、C,B发送信号A与C都能接收到)。如果两个信号波形不一致,说明冲突发生。 编码违例判决法:检查从总线上接收的信号波形是否符合曼彻斯特编码规律,不符合则说明发生冲突。64B是Ethernet的最小帧长度:如果一个主机发送一个最小帧,或者一个帧的前64个字节没有检测到冲突,说明该主机已经取得总线发送权,冲突窗口期又称为争用期。发现冲突、停止发送如果主机在发送过程中检测到冲突,主机要进入停止发送,随机延迟后重发的流程。随机延迟重发的第一步是:发送冲突加强干扰序列,保证有足够的冲突持续时间,使局域网中的所有主机都能检测出冲突存在,并立即丢弃冲突帧,减少由于冲突浪费的时间,提高信道利用率。冲突加强干扰序列信号长度为32bit随机延迟重发Ethernet规定一个帧的最大重发次数为16。后退延迟算法是:截止二进制指数后退延迟———————————————————————————————————————算法可表示为: \tau =2 \cdot R \cdot a τ:重新发送所需的后退延迟时间。a:冲突窗口的值。R:随机数,以主机地址为初始值生成随机数R。k:k=min(n,10),如果重发次数n小于10,则k=n,n≥10,则k=10.———————————————————————————————————————后退延迟时间τ到达后,节点将查询判断总线忙、闲状态,重新发送,如果再次遇到冲突,则重发次数+1,如果重发次数超过16时,表示发送失败,放弃发送该帧。CSMA/CD方法被定义为一种随机争用型介质控制访问方法。Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别。———————————————————————————————————————Ethernet V2.0是在DEC、Intel(英特尔)、Xeror公司合作研究的,所以也称Ethernet V2.0帧结构为DIX帧结构(公司首字母)IEEE802.3标准对Ethernet帧结构也做出了规定,通常称之为 802.3帧———————————————————————————————————————(1)前导码 1. DIX帧的前8B是前导码,每个字节都是10101010。接收电路通过提取曼彻斯特编码的自含时钟,实现收发双方的比特同步。 说人话就是:编码时故意搞个特别的码在前面,通过长度告知解码器后面有货送来,注意接收。 通过前导码就可判断信号是有用信号还是干扰信号,否则忽略不解码。 2. 802.3帧的前导码,每个字节都是10101010。但是有一个10101011的帧前定界符。前56位(7B×8)前导码是为了保证在接收【目的地址】时,已经进入【稳定接收状态(识别出这个是有用信号)】在62位1010…1010比特序列后出现两个11,两个11后就是Ethernet帧的目的地址字段。 3. 前导码只是为了实现收发双方的比特同步与帧同步,在接收后不需要保留,也不计入帧头长度。(2)类型字段和长度字段 1. DIX帧的类型字段表示网络层使用的协议类型。——————————————————————————————————————— 例如:类型字段=0x0800表示网络层使用IPv4协议、类型字段=0x86DD表示网络层使用IPv6协议。——————————————————————————————————————— 2. Ethernet帧最小长度为64B,除去帧头(目的地址+源地址+源地址),数据字段最短为46B。数据字段最长为1500B,因此数据字段长度在46~1500B之间。 3. DIX帧没有长度字段,所以接收端等待物理线路上没有电平的跳变(帧发送结束),除去4B的校验字段,就能取出数据字段。(3)目的地址和源地址字段 1. 目的地址和源地址表示帧的接收节点和发送节点的硬件地址。 2. 硬件地址也叫物理地址、MAC地址、Ethernet地址。 3. 源地址必须是6B的MAC地址。 4. 目的地址可以是单播地址(发送给单一主机)、多播地址(发送给一部分主机)、广播地址(发送给所有主机)。(4)帧校验字段 1. 帧校验字段FCS( Frame Check Sequence)采用32位的CRC校验。 2. CRC校验范围:目的地址、源地址、长度、LLC(Logical Link Control:逻辑链路控制)数据等字段。Ethernet接收流程分析主机主要不发送数据帧就处于接收状态。帧目的地址检查: 1. 目的地址是单一主机的物理地址,并且是本主机地址—>接收。 2. 目的地址是组地址,并且本主机属于该组—>接收。 3. 目的地址是广播地址—>接收。 4. 如果以上3种目的地址都与本主机地址不匹配,丢弃该接收帧。帧接收: 1. CRC校验正确。 2. 帧长度正确。 3. 如果1、2都正确,将帧中的数据发送到网络层,否则报告”接收失败“进入帧结束状态。帧校验: 1. CRC校验正确,但是帧长度不对,则报告“帧长度错”。 2. 如果校验出错,判断接收帧是不是8bit的整数倍(字段长度的单位是字节,1B=8bit,接收帧长度正常的话肯定是8bit的整数倍)☆ 如果不是8bit的整数倍,则报告“帧比特出错”。☆ 如果没有发现比特丢失或者比特位对位错,则报告“帧校验错”。 3. 进入结束状态。帧间最小间隔 1. 为保证网卡能正确、连续的处理接收帧,要规定一个帧间最小间隔 (网卡处理接收帧要时间、虽然很短) 2. 规定Ethernet帧的最小间隔为9.6μsEthernet网卡网卡由三部分组成:网卡与传输介质的接口(RJ45)、Ethernet数据链路控制器、网卡与主机的接口(主板的I/O扩展槽)。Ethernet数据链路控制器的功能:实现发送数据编码、接收数据解码、CRC产生与校验、曼彻斯特编码与解码、CSMA/CD介质访问控制。网卡的物理地址写入网卡的只读存储器中,不会与世界上任何一台其他的计算机重复。编辑于 2022-08-10 18:41Ethernet以太网(Ethernet)工作原理​赞同 19​​4 条评论​分享​喜欢​收藏​申请

一文带你全方位了解网卡 - 知乎

一文带你全方位了解网卡 - 知乎切换模式写文章登录/注册一文带你全方位了解网卡通信产品推荐官史上最强通信产品推荐官-飞速(FS),为您推荐最优产品方案。网卡,即网络接口卡(network interface card),也叫NIC卡,是一种允许网络连接的计算机硬件设备。网卡应用广泛,市场上有许多不同种类,如 PCIe网卡,服务器网卡。本文将对网卡的基础、功能、元件与类型进行全方位讲解。什么是网卡?在正式介绍网卡的定义之前,有必要了解一下网卡的其他名称。网卡的名称有很多,比如网络接口控制器、网络接口卡、以太网卡、局域网卡、网络适配器或网络适配器卡等。尽管名称各异,它们都是指能使计算机和服务器等网络设备相互连接的电路板。内嵌式网卡在大多数计算机和一些网络服务器中都很常见,除此之外,还可以将服务器网卡等插入设备的扩展槽中。图1:什么是网卡网卡的功能网卡的定义很简单,但具体有些什么功能呢?网卡作为TCP/IP层的接口,可以在物理层传输信号,在网络层传输数据包。无论位于哪个层,它都充当计算机或服务器和数据网络之间的中间媒介。当用户发送一个web页面请求时,网卡从用户设备中获取数据,并将其发送到网络服务器,然后接收所需的数据展示给用户。网卡的构造网卡一般由一个控制器、一个boot ROM槽、一/多个网卡端口、一个主板接口、LED指示灯、一个支架和一些其他电子元件组成,每个部件都有其独特的功能:控制器:控制器就像一个微型CPU,用来处理接收到的数据。控制器作为网络适配器的核心部分,直接决定着网络适配器的性能。boot ROM槽:网卡上的这个槽能启用boot ROM功能,boot ROM可使无磁盘工作站连接到网络,在提高安全性的同时降低硬件成本。网卡端口:通常情况下,该端口直接与以太网线或光模块连接,产生和接收网线或光纤跳线上的电信号。总线接口:该接口位于电路板的一侧,通过插入扩展槽连接网卡和计算机或服务器。LED指示灯:指示灯用于帮助用户识别网卡的工作状态,确认网络是否连接,数据是否传输。支架:市面上有两种类型的支架,一个是全长12cm的全高支架,另一个是长8cm的半高支架。这个支架可以帮助用户将网卡固定在计算机或服务器的扩展槽中。图2:网卡内部结构网卡的种类根据主机接口、传输速度、应用领域等不同,网卡可分为以下几个不同的类型。基于网络连接方式分类基于网卡访问网络的方式,可将网卡分为有线网卡和无线网卡。顾名思义,有线网卡通常需要用一根跳线(如以太网跳线和光纤跳线)将一个节点连接到网络;无线网卡通常带有一个小天线,利用无线电波与接入点进行通信,从而接入无线网络。基于总线接口类型分类ISA总线网卡:ISA总线发布于1981年,是IBM标准兼容的总线结构。由于9Mbps的网卡速度较慢,ISA总线接口逐渐被淘汰,现在市场上很少见。PCI总线网卡:PCI发布于19世纪90年代,替代了以前的ISA标准。它的固定宽度为32位(数据传输速率为133MB/s)和64位(数据传输速率为266MB/s)。这种类型的网卡最初用于服务器,后来逐渐应用于电脑。如今大多数电脑没有扩展卡,而是采用嵌入式网卡。因此,PCI总线网卡已被其他总线接口取代,如PCI- X或USB接口。PCI-X网卡:PCI- X是一种增强的PCI总线技术。它支持64位运行,最高可达1064MB/s。多数情况下PCI- X的插槽与PCI网卡是向后兼容的。PCIe网卡:PCIe是一种最新的标准,在计算机和服务器主板上很流行。PCIe网卡现在有五个版本,分别支持不同的速度。USB网卡:USB总线是一种外部总线标准。它有三个版本,具有不同的传输速率,可以与各种设备一起工作。基于接口类型的分类根据连接线材的不同,市场上有四种类型的网卡端口。RJ-45端口用于连接双绞线(如Cat5和Cat6), AUI端口用于粗同轴电缆(如AUI电缆),BNC端口用于细同轴电缆(如BNC电缆),光端口用于模块(如10G/25G光模块)。基于传输速度的分类基于不同的速度,网卡有10Mbps,100Mbps, 10/100Mbps自适应卡,1000Mbps、10G、25G甚至更高速度的网卡。10Mbps、100Mbps和10/100Mbps自适应网卡适用于小型局域网、家庭或办公室。1000Mbps网卡可为快速以太网提供更高的带宽。10Gb/25Gb网卡以及更高速度的网卡则受到大企业与数据中心的欢迎。基于应用领域的分类电脑网卡:现在大多数新计算机的主板都内置了网卡,因此不需要单独的局域网卡。它通常具有10/100Mbps和1Gbps的速度,并允许一台PC与其他PC或网络通信。服务器网卡:服务器网卡的主要功能是管理和处理网络流量。与普通计算机网卡相比,服务器网卡要求更高的数据传输速度,如10G、25G、40G甚至100G。另外,服务器网卡的CPU占用率很低,因为它有一个特殊的网络控制器,可以减轻CPU的负担。为满足用户对服务器网卡速度的不同需求,飞速(FS)推出了10G PCIe网卡和25G/40G网卡,这些网卡使用英特尔控制器,支持多核处理器与服务器和网络虚拟化的优化。结论网卡的性能直接影响整个网络的数据传输速率,因此,无论您是在寻找家用网卡,还是为小型企业或数据中心选择服务器网卡,在购买网卡之前,有必要了解网卡是什么,网卡的组件和功能以及网卡的类型。要了解更多关于如何购买网卡的知识,可以参考飞速(FS)资讯上《购买光纤网卡时,我们该注意什么?》一文。发布于 2021-07-16 17:28网卡计算机网络网络通信​赞同 40​​4 条评论​分享​喜欢​收藏​申请

以太网(Ethernet) - 知乎

以太网(Ethernet) - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册以太网(Ethernet)以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连…查看全部内容关注话题​管理​分享​百科讨论精华视频等待回答详细内容以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。浏览量2690 万讨论量9728  帮助中心知乎隐私保护指引申请开通机构号联系我们 举报中心涉未成年举报网络谣言举报涉企侵权举报更多 关于知乎下载知乎知乎招聘知乎指南知乎协议更多京 ICP 证 110745 号 · 京 ICP 备 13052560 号 - 1 · 京公网安备 11010802020088 号 · 京网文[2022]2674-081 号 · 药品医疗器械网络信息服务备案(京)网药械信息备字(2022)第00334号 · 广播电视节目制作经营许可证:(京)字第06591号 · 服务热线:400-919-0001 · Investor Relations · © 2024 知乎 北京智者天下科技有限公司版权所有 · 违法和不良信息举报:010-82716601 · 举报邮箱:jubao@zhihu.

以太网——网卡的组成及工作原理 - 知乎

以太网——网卡的组成及工作原理 - 知乎切换模式写文章登录/注册以太网——网卡的组成及工作原理亿佰特物联网应用​专注物联网通信应用。网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。只要连接到局域网,就需要安装网卡。一个网卡主要包括OSI的最下面的两层,物理层和数据链路层,物理层的芯片称之为PHY,数据链路层的芯片称之为MAC控制器,这方面的内容在之前已经有过介绍。今天我们来了解网卡的工作原理,学习数据包的发送和接收的处理过程。网卡工作在OSI的最后两层:物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是PCI总线接MAC总线,MAC接PHY,PHY接网线(通过变压装置)。下面继续让我们看一下PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)界面通过读写PHY的寄存器来完成的。PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己目前的状态反映到寄存器里面,MAC通过SMI总线不断地读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度、双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。所以,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。工作过程PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则(10Based-T的NRZ编码或100based-T的曼彻斯特编码)把数据编码再变为模拟信号把数据送出去。收数据时的流程反之。现在来了解PHY的输出后面部分。一颗CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更远的地方会有很大的直流分量的损失。而且如果外部网线直接和芯片相连的话,电磁感应和静电,很容易造成芯片的损坏。再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备。这时就需要Transformer(隔离变压器)。它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。隔离变压器本身就是为耐2KV~3KV的电压而设计的,同时起到防雷感应保护的作用。有些用户的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是隔离变压器起到了保护作用。发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。在发送数据期间,如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。在等待一段随机时间后,再进行新的发送。如果重传多次后(大于16次)仍发生冲突,就放弃发送。接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变。通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理。发布于 2022-12-01 13:56・IP 属地四川网卡以太网(Ethernet)​赞同 6​​1 条评论​分享​喜欢​收藏​申请

Access Denied

Access Denied

Access Denied

You don't have permission to access "http://www.intel.cn/content/www/cn/zh/products/details/ethernet.html" on this server.

Reference #18.75051c78.1710414868.1a45dd0a

以太网卡_百度百科

_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10以太网卡播报讨论上传视频计算机术语本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。以太网卡按网卡的总线接口类型来分我们一般可分为早期的ISA接口网卡、PCI接口网卡。在服务器上 [1]PCI-X总线接口类型的网卡也开始得到应用,笔记本电脑所使用的网卡是 [2]PCMCIA接口类型的。中文名以太网卡外文名ethernet card领    域计算机类    别早期的ISA接口网卡,PCI接口网卡目录1基本介绍2接口类型3接口划分4带宽划分5应用领域基本介绍播报编辑随着 [3]计算机网络技术的飞速发展,为了满足各种应用环境和应用层次的需求,出现了许多 不同类型的网卡,网卡的划分标准也因此出现了多样化,下面我们就对市面上主流的网卡分类情况进行一下浏览。接口类型播报编辑ISA总线网卡这是早期的一种的接口类型网卡,在上世纪80年代末,90 年代初期几乎所有内置板板卡都是采用ISA总线接口类型,一直到上世纪 常见的以太网卡90年代末期都还有部分这类接口类型的网卡。当然这种总线接口不仅用于网卡,像 [4]PCI接口一样,当时也普遍应用于包括网卡、显卡、声卡等在内所有内置板卡。ISA总线接口由于I/O速度较慢,随着上世纪90年代初PCI总线技术的出现,很快被淘汰了。在市面上基本上看不到有ISA总线类型的网卡。不过近期出现一种复古现象,就是在一些品牌的最新的i865系列 [5]芯片组主板中居然又提供了几条ISA插槽,真是令人费解!PCI总线网卡常见的以太网卡这种总线类型的网卡在当前的台式机上相当普遍,也是最主流的一种网卡接口类型。因为它的I/O速度远比ISA总线型的网卡快(ISA最高仅为33MB/s,而PCI 2.2标准32位的PCI接口数据传输速度最高可达133MB/s),所以在这种总线技术出现后很快就替代了原来老式的ISA总线。它通过网卡所带的两个指示灯颜色初步判断网卡的工作状态。能在市面上买到的网卡基本上是这种总线类型的网卡,一般的PC机和服务器中也提供了好几个PCI总线插槽,基本上可以满足常见PCI适配器(包括显示卡、声卡等,不同的产品利用金手指的数量是不同的)安装。主流的PCI规范有PCI2.0、PCI2.1和PCI2.2三种,PC机上用的32位PCI网卡,三种接口规范的网卡外观基本上差不多(主板上的PCI插槽也一样)。服务器上用的64位PCI网卡外观就与32位的有较大差别,主要体现 在金手指的长度较长。PCI-X总线网卡这是最新的一种在服务器开始使用的网卡类型,它与原来的PCI相比在I/O速度方面提高了一倍,比PCI接口具有更快的 [6]数据传输速度(2.0版本最高可达到266MB/s的传输速率)。这种总线类型的网卡在市面上还很少见,主要是由服务器生产厂商随机独家提供,如在IBM的X系列服务器中就可以见到它的踪影。PCI-X总线接口的网卡一般32位总线宽度,也有的是用64位数据宽度的。但因受到Intel新总线标准PCI-Express的排挤,是否能最终流行还是未知之数,因为由Intel提出,由PCI-SIG(PCI特殊兴趣组织)颁布的PCI-Express无论在速度上,还是结构上都比PCI-X总线要强许多。Intel的i875P芯片组已提供对PCI-Express总线的支持,有专家分析预计将在底逐步普及这一新的总线接口。它将取代PCI和现行的AGP接口,最终实现内部总线接口的统一。PCMCIA总线网卡这种总类型的网卡是笔记本电脑专用的,它受笔记本电脑的空间限制,体积远不可能像PCI接口网卡那么大。随着笔记本电脑的日益普及,这种总线类型的网卡在市面上较为常见,很容易找到,而且生产这种总线型的网卡的厂商也较原来多了许多。PCMCIA总线分为两类,一类为16位的PCMCIA,另一类为32位的CardBus。CardBus是一种用于笔记本计算机的新的高性能PC卡总线接口标准,就像广泛地应用在台式计算机中的PCI总线一样。该总线标准与原来的PC卡标准相比,具有以下的优势:第一,32位数据传输和33MHz操作。CardBus快速以太网PC卡的最大吞吐量接近90 Mbps,而16位快速以太网PC卡仅能达到20-30 Mbps。第二,总线自主。使PC卡可以独立于主CPU,与计算机内存间直接交换数据,这样CPU就可以处理其它的任务。第三,3.3V供电,低功耗。提高了电池的寿命,降低了计算机内部的热扩散,增强了系统的可*性。第四,后向兼容16位的PC卡。老式以太网和Modem设备的PC卡仍然可以插在CardBus插槽上使用。USB接口网卡作为一种新型的总线技术,USB(Universal Serial Bus,通用串行总线)已经被广泛应用于鼠标、键盘、打印机、扫描仪、Modem、音箱等各种设备。由于其传输速率远远大于传统的并行口和串行口,设备安装简单并且支持热插拔。USB设备一旦接入,就能够立即被计算机所承认,并装入任何所需要的驱动程序,而且不必重新启动系统就可立即投入使用。当不再需要某台设备时,可以随时将其拔除,并可再在该端口上插入另一台新的设备,然后,这台新的设备也同样能够立即得到确认并马上开始工作,所以越来越受到厂商和用户的喜爱。USB这种通用接口技术不仅在一些外置设备中得到广泛的应用,如Modem、打印机、数码相机等,在网卡中也不例外。接口划分播报编辑除了可以按网卡的总线接口类型划分外,我们还可以按网卡的网络接口类型来划分。网卡最终是要与网络进行连接,所以也就必须有一个接口使网线通过它与其它计算机网络设备连接起来。不同的网络接口适用于不同的网络类型,常见的接口主要有以太网的RJ-45接口、细同轴电缆的BNC接口和粗同轴电AUI接口、FDDI接口、ATM接口等。而且有的网卡为了适用于更广泛的应用环境,提供了两种或多种类型的接口,如有的网卡会同时提供RJ-45、BNC接口或AUI接口。RJ-45接口网卡这是最为常见的一种网卡,也是应用最广的一种接口类型网卡,这主要得益于双绞线以太网应用的普及。因为这种RJ-45接口类型的网卡就是应用于以双绞线为传输介质的以太网中,它的接口类似于常见的电话接口RJ-11,但RJ-45是8芯线,而电话线的接口是4芯的,通常只接2芯线(ISDN的电话线接4芯线)。在网卡上还自带两个状态批示灯,通过这两个指示灯颜色可初步判断网卡的工作状态。图7所示的是台式机所用的PCI总线类型RJ-45以太网卡,笔记本专用的PCMCIA总线接口的网卡,因其结构限制,所以通常不直接提供RJ-45接口,而是通过一条转接线来提供的,不过也有一些PCMCIA笔记本专用网卡直接提供RJ-45以太网卡。BNC接口网卡这种接口网卡对应用于用细同轴电缆为传输介质的以太网或令牌网中,这种接口类型的网卡较少见,主要因为用细同轴电缆作为传输介质的网络就比较少。AUI接口网卡这种接口类型的网卡对应用于以粗同轴电缆为传输介质的以太网或令牌网中,这种接口类型的网卡更是很少见,因为用粗同轴电缆作为传输介质的网络更是少上加少。FDDI接口网卡这种接口的网卡是适应于FDDI网络中,这种网络具有100Mbps的带宽,但它所使用的传输介质是光纤,所以这种FDDI接口网卡的接口也是光模接口的。随着快速以太网的出现,它的速度优越性已不复存在,但它须采用昂贵的光纤作为传输介质的缺点并没有改变,所以也非常少见。ATM接口网卡这种接口类型的网卡是应用于ATM光纤(或双绞线)网络中。它能提供物理的传输速度达155Mbps。带宽划分播报编辑随着网络技术的发展,网络带宽也在不断提高,但是不同带宽的网卡所应用的环境也有所不同,当然价格也完全不一样了,为此我们有必要对网卡的带宽作进一步了解。主流的网卡主要有10Mbps网卡、100Mbps以太网卡、10Mbps/100Mbps自适应网卡、1000Mbps千兆以太网卡四种。10Mbps网卡10Mbps网卡主要是比较老式、低档的网卡。它的带宽限制在10Mbps,这在当时的ISA总线类型的网卡中较为常见,PCI总线接口类型的网卡中也有一些是10Mbps网卡,不过这种网卡已不是主流。这类事宽的网卡仅适应于一些小型局域网或家庭需求,中型以上网络一般不选用,但它的价格比较便宜,一般仅几十元。100Mbps网卡100Mbps网卡在来说是一种技术比较先进的网卡,它的传输I/O带宽可达到100Mbps,这种网卡一般用于骨干网络中。这种带宽的网卡在市面上已逐渐得到普及,但它的价格稍贵,一些名牌的此带宽网卡一般都要几百元以上。注意一些杂牌的100Mbps网卡不能向下兼容10Mbps网络。10Mbps/100Mbps网卡这是一种10Mbps和100Mbps两种带宽自适应的网卡,也是应用最为普及的一种网卡类型,最主要因为它能自动适应两种不同带宽的网络需求,保护了用户的网络投资。它既可以与老式的10Mbps网络设备相连,又可应用于较新的100Mbps网络设备连接,所以得到了用户普遍的认同。这种带宽的网卡会自动根据所用环境选择适当的带宽,如与老式的10Mbps旧设备相连,那它的带宽就是10Mbps,但如果是与100Mbps网络设备相连,那它的带宽就是100Mbps,仅需简单的配置即可(也有不用配置的)。也就是说它能兼容10Mbps的老式网络设备和新的100Mbps网络设备。1000Mbps以太网卡千兆以太网(Gigabit Ethernet)是一种高速局域网技术,它能够在铜线上提供1Gbps的带宽。与它对应的网卡就是千兆网卡了,同理这类网卡的带宽也可达到1Gbps。千兆网卡的网络接口也有两种主要类型,一种是普通的双绞线RJ-45接口,另一种是多模SC型标准光纤接口。应用领域播报编辑如果根据网卡所应用的计算机类型来分,我们可以将网卡分为应用于工作站的网卡和应用于服务器的网卡。前面所介绍的基本上都是工作站网卡,其实通常也应用于普通的服务器上。但是在大型网络中,服务器通常采用专门的网卡。它相对于工作站所用的普通网卡来说在带宽(通常在100Mbps以上,主流的服务器网卡都为64位千兆网卡)、接口数量、稳定性、纠错等方面都有比较明显的提高。还有的服务器网卡支持冗余备份、热拨插等服务器专用功能。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

网卡_百度百科

度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心网卡播报讨论上传视频计算机硬件收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。网卡是一块被设计用来允许计算机在计算机网络上进行通讯的计算机硬件。由于其拥有MAC地址,因此属于OSI模型的第1层和2层之间。它使得用户可以通过电缆或无线相互连接。每一个网卡都有一个被称为MAC地址的独一无二的48位串行号,它被写在卡上的一块ROM中。在网络上的每一个计算机都必须拥有一个独一无二的MAC地址。没有任何两块被生产出来的网卡拥有同样的地址。这是因为电气电子工程师协会(IEEE)负责为网络接口控制器(网卡)销售商分配唯一的MAC地址。中文名网卡外文名NIC (Network Interface Controller)别    名网络适配器、网络接口卡作    用连接计算机与外界局域网目录1简介2主要功能3属性设置4网卡驱动▪END设备驱动程序的装载▪启动 END 设备▪网络数据包的接收▪网络数据包的发送5分类6双网卡切换7有线网卡8无线网卡9虚拟网卡10故障及解决方法▪网络连接不稳定▪驱动程序出现的故障▪磁场导致故障▪网卡数据收发异常简介播报编辑网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。 [5]网卡以前是作为扩展卡插到计算机总线上的,但是由于其价格低廉而且以太网标准普遍存在,大部分新的计算机都在主板上集成了网络接口。这些主板或是在主板芯片中集成了以太网的功能,或是使用一块通过PCI (或者更新的PCI-Express总线)连接到主板上的廉价网卡。除非需要多接口或者使用其它种类的网络,否则不再需要一块独立的网卡。甚至更新的主板可能含有内置的双网络(以太网)接口。在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据包时,它就由协议栈向下交给网卡组装成帧后发送到局域网。随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽各个厂家生产的网卡种类繁多,但其功能大同小异。主要功能播报编辑1、数据的封装与解封发送时将上一层传递来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层2、链路管理主要是通过CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议来实现3、数据编码与译码即曼彻斯特编码与译码。其中曼彻斯特码,又称数字双向码、相位编码(PE),是一种常用的二元码线路编码方式之一,被物理层使用来编码一个同步位流的时钟和数据。在通信技术中,用来表示所要发送比特 流中的数据与定时信号所结合起来的代码。 常用在以太网通信,列车总线控制,工业总线等领域。属性设置播报编辑通过高级网卡选项可以提升网络性能:有效利用CPU:巨型帧vs.卸载功能如果服务器性能低下,那么可能是由于网络负载较大。标准的以太网数据包大小为1518个字节,大多数文件被拆分为成百上千甚至上百万个数据包或者帧。这些小的数据包通过网络传输,和众多节点共享网络带宽,但是数据帧的发送与接收会带来CPU开销。大多数网卡支持巨型帧,这意味着能够处理高达9000字节的数据包或者帧。巨型帧在每个数据包中包括更多的数据,因此网络中需要传输的数据包数量就变小了。吞吐量提升意味着开销——数据包头与其他数据包内容——以及CPU开销减少了。巨型帧肯定存在缺点。管理员必须对网络中的所有节点进行配置才能支持巨型帧的传输。巨型帧并不是IEEE标准的一部分,因此不同的网卡配置的巨型帧大小有所不同。为了在节点之间高效传输巨型帧要做一些实验。更大的数据包可能会增加某些负载的延迟,因为其他节点要等更长的时间才能使用带宽,请求与发送被丢弃或者被破坏的数据包也需要花更长的时间。IT专业人员可能放弃巨型帧而使用具有LSO以及LRO功能的网卡。LSO和LRO允许CPU通过网卡传输更多数量的数据,而且基本上与巨型帧提供了相同的CPU性能。通行能力:可调整的帧间距vs.以太网升级以太网在每发送一个数据包后都要等一段时间,这称之为帧间距。这为其他网络节点占用带宽并发送数据包提供了机会。帧间距等于发送96个数据位的时间。例如,1Gb以太网使用标准的0.096ms的帧间距,10Gb以太网的帧间距为0.0096ms。利用这一固定的数据包传输之间的间距并非总是有效而且在网络负载较大的情况下可能会降低网络性能。支持自适应帧间距的网卡能够基于网络负载动态调整帧间距,这有可能提升网络性能。除非接近网络带宽,否则调整帧间距通常不会提升网络性能。全方位的网络性能基准测试能够展现网络使用模式。如果以太网连接频繁达到带宽上限,那么升级到速度更快的以太网或者使用网卡绑定而非调整帧间距将能够提升网络性能。限制CPU中断,提升CPU性能当数据包在网络中传输时,网卡会产生CPU中断。以太网速度越快,CPU中断的频率也就越高,CPU必须更多地关注网络驱动器以及其他处理数据包的软件。如果流量起伏不定,CPU性能可能会变得不稳定。支持人为中断节流的网卡能够减少CPU中断频率,将CPU从网卡中放出来,很可能能够提升CPU性能。中断限制越多并不一定越好。过高的中断限制可能会降低CPU的响应能力;CPU将需要花更长的时间来处理所有正在产生的中断。当高速小数据包近乎实时地到达时,限制中断将会降低性能。在多种模式下对网络以及CPU性能进行测试直到能够建立起充分的系统响应能力,产生平滑的CPU中断。还可以考虑支持TCP/IP卸载功能的网卡。这些网卡能够在线处理众多CPU密集型工作任务,同时减少对CPU的中断请求。优先处理对时间敏感的数据类型:启用包标记对事件敏感的数据类型比如VoIP或者视频通常按照高优先级流量对待,但是网络对所有数据包一视同仁。采用数据包标记,被标记的数据包能够被分到操作系统设置的流量队列中,在处理其他低优先级的数据包之前先处理高优先级的VoIP以及视频数据包。包标记有助于QoS战略,而且是很多VLAN部署的一个必要组成部分。如果网络性能低于已定义的基准,可以对网卡进行调整,务必对服务器以及网卡进行基准测试后再对配置进行更改。这些推荐的网卡调整不会带来显著的性能提升,但是也不受预算的限制。随时间变化评估并观察网络性能,检查任何意想不到的后果,比如提升了某个工作负载性能却降低了其他工作负载的性能。网卡驱动播报编辑由于驱动功能层的存在,协议驱动程序和网卡驱动程序之间相互独立,大大简化了网络设备增加和网络组件扩展的复杂度。网络协议栈主要支持增强型的网络设备驱动 (Enhanced Network Driver)。 [1]END设备驱动程序的装载END设备驱动程序的装载主要就是完成END设备驱动 程序与驱动功能抽象层的挂接,使得网络协议栈实现对 END设备的控制。具体过程包括: 初始化网卡和PHY设备,配置网卡和 PHY 设备的通信参数等;为网卡控制结构分配空间同时初始化END_OBJ结构,END_OBJ结构主要包括网卡控制结构以及与网络协议栈相关的参数信息;对网卡驱动对应的参数串进行解析和处理;为接收数据分配空间,保证接收数据的存放;通过配置END_OBJ结构中的NET_FUNCS 参数实现网卡驱动与网络协议栈的挂接。 [1]启动 END 设备END设备的启动过程主要包括中断处理程序的挂接和使 能网卡中断。对于网卡设备来说,其处理数据的方式可分为中断和轮询两种工作模式,在END设备启动过程中,将接收数据和发送数据均设置为中断模式,并挂接接收和发送数据的中断处理程序,最后使能网卡中断、接收和发送中断,则可完成END设备的启动。 [1]网络数据包的接收对于网络数据包的接收来说,操作系统的网络协议栈无需网卡驱动实现对网络数据包的处理。当网卡设备接 收到数据后,其会产生一个接收中断,在接收中断处理程序中, 程序会调用netJobAdd函数启动一个任务程序将网卡设备接收到的数据传递给驱动功能抽象层,网络协议栈通过驱动功能抽象层的接收函数获取到网络数据包并进行相应的数据处理。此处利用netJobAdd 函数可以减少接收中断的处理时间,提高网络数据的接收能力。 [1]网络数据包的发送对于网络数据包的发送来说,当网络协议栈发送数据时,其会将数据放置到缓冲区中,并通过调用驱动功能抽象层的发送函数将缓冲区中的数据发送给网卡设备,网卡设备接收到数据后就将其置于发送缓冲区中等待数据的发送。 [1]分类播报编辑根据网卡所支持的物理层标准与主机接口的不同,网卡可以分为不同的类型,如以太网卡和令牌环网卡等。根据网卡与主板上总线的连接方式、网卡的传输速率和网卡与传输介质连接的接口的不同,网卡分为不同的类型。按照网卡支持的计算机种类分类,主要分为标准以太网卡和PCMCIA网卡:标准以太网卡用于台式计算机联网,而PCMCIA网卡用于笔记本电脑。按照网卡支持的传输速率分类,主要分为10Mbps网卡、100Mbps网卡、10/100Mbps自适应网卡和1000Mbps网卡四类:根据传输速率的要求,10Mbps和100Mbps网卡仅支持10Mbps和100Mbps的传输速率,在使用非屏蔽双绞线UTP作为传输介质时,通常10Mbps网卡与3类UTP配合使用,而100Mbps网卡与5类UTP相连接。10/100Mbps自适应网卡是由网卡自动检测网络的传输速率,保证网络中两种不同传输速率的兼容性。随着局域网传输速率的不断提高,1000Mbps网卡大多被应用于高速的服务器中。按网卡所支持的总线类型分类,主要可以分为ISA、EISA、PCI等:由于计算机技术的飞速发展,ISA总线接口的网卡的使用越来越少。EISA总线接口的网卡能够并行传输32位数据,数据传输速度快,但价格较贵。PCI总线接口网卡的CPU占用率较低,常用的32位PCI网卡的理论传输速率为133Mbps,因此支持的数据传输速率可达100Mbps。双网卡切换播报编辑为了使2块网卡实现高效双冗余备份,必须保证这2块网卡具有相同的物理地址和IP地址这样 对于上层应用系统而言,系统中呈现“单网卡”的特征;反之,当系统中一块网卡切换到另一块网卡工作时,如果IP地址发生变化,则系统无法正常接收和发送数据。如果IP地址不改变,而物理地址改变,则会引起协议栈中ARP绑定表的变化,而重新对应ARP绑定表中IP地址与网卡物理地址的关系会延长两个网卡之间的切换时间。 [2]然而,每块网卡的物理地址在全世界范围内是唯一的,它保存在网卡的PROM中。为了使2块网卡具有相同的物理地址,在网卡初始化时,从PROM中读出其中一块网卡的物理地址,将该物理地址的内容写入另一 块网卡物理地址寄存器和数据结构变量中,在此情况下,这2块网卡就具有完全相同的物理地址了。 [2]有线网卡播报编辑光纤网卡,指的是光纤以太网适配器,简称光纤网卡,学名Fiber Ethernet Adapter.传输的是以太网通信协议,一般通过光纤线缆与光纤以太网交换机连接。按传输速率可以分为100Mbps、1Gbps、10Gbps,按主板插口类型可分为PCI、PCI-X、PCI-E(x1/x4/x8/x16)等,按接口类型分为LC、SC、FC、ST等。LC接口光纤网卡的含义:LC接口名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC等几种类型。SC接口,由于其操作的便利性,得到广泛运用,比如光纤到桌面(FTTD)的广泛运用,使得SC接口光纤网卡得到普及。SC接口光纤网卡的含义:SC接口光纤网卡名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC、MTRJ等几种类型。由于SC接口光纤操作的便利性,从而使得带SC接口光模块的网卡,得到广泛运用,而经常被人们所提起,因为也诞生了:SC接口光纤网卡这个名词。光纤端口工作波长及传输距离:光纤接口 网络媒介 工作波长 工作距离SC/APC 单纤,单模 波长1310/1550nm 10/20KMSC/PC 双纤,单模 波长1310nm 10/20/40KMSC/PC 双纤,多模 波长850nm 550MSFP光纤网卡含义:SFP是 (Small Form-factor Pluggables)可以简单的理解为GBIC的升级版本。SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。SFP光纤网卡,故名思议,就是一种小型可热拨插模块的光纤网卡。在网卡集成SFP插槽,用户可根据实际需要,插入多模或者单模SFP光模块,而且可以根据实际传输距离,插入不同传统距离的光模块;而不需要根据网卡本身。这就给用户很大的选择空间。无线网卡播报编辑无线网卡用于连接无线网络,就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份,只可惜速度相较于有线网络略逊且延迟较大。无线网卡是终端无线网络的设备,是无线局域网的无线覆盖下通过无线连接网络进行上网使用的无线终端设备。具体来说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,如果你在家里或者所在地有无线路由器或者无线AP(Access Point,无线接入点)的覆盖,就可以通过无线网卡以无线的方式连接无线网络可上网。无线网卡的工作原理是微波射频技术,笔记本有WIFI、LTE等几种无线数据传输模式来上网,后者由移动网络运营商来实现,前者三大运营商有所参与,但大多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。无线上网遵循802.11标准,通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据。按照IEEE802.11协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)。在两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来实现无线网络的CSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信息放在数据包的前面。IEEE802.11协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是则上交,否则丢弃。如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送;否则,暂不发送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发。无线网卡标准:1.IEEE 802.11a:使用5GHz频段,传输速度54Mbps,与802.11b不兼容2.IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps3.IEEE 802.11g:使用2.4GHz频段,传输速度54Mbps4.IEEE 802.11n :使用2.4GHz频段或5Ghz频段,传输速度可达300Mbps5.IEEE 802.11ac:使用2.4GHz频段或5Ghz频段传输速度最大可达1.73Gbps6.IEEE 802.11ax:使用2.4GHz频段、5Ghz频段或6Ghz频段,最高速度可达11 GbpsWIFI6早期对WIFI联盟新命名方式的图解WIFI联盟已经将802.11a/b/g命名为WIFI3,802.11n命名为WIFI4,802.11ac命名为WIFI5,802.11ax命名为WIFI6,这种命名方式能更好的方便消费者了解产品支持的WIFI技术标准,从而方便消费者更好的选择WIFI产品。无线网卡的作用、功能跟普通电脑网卡一样,是用来连接到局域网上的。它只是一个信号收发的设备,只有在找到上互联网的出口时才能实现与互联网的连接,所有无线网卡只能局限在已布有无线局域网的范围内。无线网卡就是不通过有线连接,采用无线信号进行连接的网卡。无线网卡可以根据不同的接口类型来区分,第一种是USB无线网卡,是最常见的;第二种是台式机专用的PCI/PCI-E接口无线网卡;第三种是笔记本电脑内置的MINI-PCIE/M.2 1216接口无线网卡。就如上面所说,我们光有无线网卡是无法连接无线网络,还必须有无线路由器或无线AP。无线网卡就好比是接收器,无线路由相当于发射器。其实还是需要有线的Internet线路接入到无线猫上,再将信号转化为无线的信号发射出去,由无线网卡接收。无线网卡最先进的标准是IEEE 802.11ax,它大幅提升了无线局域网竞争力。随着无线局域网标准、技术快速发展,产品逐渐成熟,无线局域网的应用也日益丰富。越来越多的家庭用户开始使用无线网络,许多企业也纷纷在自己的办公大楼内布设无线局域网,同时,电信运营商对无线局域网也给予了极大关注,无论是在机场、酒店、咖啡厅等公共区域铺设公众无线网络,给大家提供方便的无线上网。虚拟网卡播报编辑随着嵌入式设备对网络需求的增长,物联网技术通过传 感器获取大量数据,这些数据通过嵌入式网关进行处理,这就涉及到各种网络通信算法。但是通常嵌入式软硬件开发时间是不均衡的。如果网络通信算法已经完成。而硬件仍然处于调试状态,导致网络通信算法不能够及时验证,则开发效率降低。虚拟网卡测试平台提供了不需要具体硬件参与,就能完成多网卡设备的通信算法验证,降低了软件开发周期。 并且通过分析虚拟网卡接收和发送的数据包,进而对算法的准确性和性能进行测试。 [3]故障及解决方法播报编辑网络连接不稳定在网卡工作正常的情况下,网卡的指示灯是长亮的(而在传输数据时,会快速地闪烁)。如果出现时暗时明,且网络连接老是不通的情况,最可能的原因就是网卡和PCI插槽接触不良。和其他PCI设备一样,频繁拔插网卡或移动电脑时,就很容易造成此类故障,重新拔插一下网卡或换插到其他PCI插槽都可解决。此外,灰尘多、网卡金手指被严重氧化,网线接头损坏也会造成此类故障。只要清理一下灰尘、用报纸把“金手指"擦亮即可解决。 [4]驱动程序出现的故障网卡和其他硬件一样,驱动程序不完善也极易引起故障,比如果用瑞显(Realtek)RT18469芯片的网卡,在Windows下就经常会出现Net-BIOSTCP/IP方面的错误。棉驱动更新到最新版后,此类问题就会迎刃而解。所以,当网卡出现一些不明缘由的故障时,可以到“驱动之家”等专业网站更新驱动来解决(推荐大家优先使用经过微软WHQL认证的驱动,通过此认证的驱动程序与Windows系统的兼容性是最好的)。一般在排除硬件,网络故障前提下,升级或重装驱动可以解决很多莫名故障。如果网卡故障是发生在驱动程序更新之后的话,可以用网卡自带的驱动程序来恢复一下。 [4]磁场导致故障网卡与其它电子产品一样。很容易受到磁场干扰而发生故障。所以,网卡和网络布线时,就要采用屏蕺性强的网线和网卡设备,同时尽可能地避开微波炉、电冰箱、电视机等大功率强磁场设备,降低网卡故障的几率。 [4]网卡数据收发异常第一步:依次单击“开始”、“控制面板”命令,弹出系统控制面板窗口,用 鼠标双击“网络和共享中心”图标,点击其后界面中的“管理网络连接”按钮,进 入网络连接列表窗口,右击“本地连接”图标,执行快捷菜单中的“属性”命令, 打开本地连接属性对话框,选中TCP/IPv4协议选项,点击“属性”按钮,切换到对应协议属性对话框,看看这里的IP地址等参数是否设置正确,如果用户输入了错误的IP地址,或者对网络参数配置不熟悉,就很容易引起网络故障。设置好了网络参数,或许故障现象就能自动消失了。第二步:检查网卡设备工作状态是否正常。首先用手触摸网卡附近是否存在温度过高现象,在计算机长时间工作的情况下,如果计算机散热性能不好的话,很容易使网卡发生性能下降现象。当确认由于温度过高引起网卡工作不正常时,只要暂时关闭计算机一段时间,就能解决问题。其次检查一些应用程序或软件系统有没有对网卡设备进行操作权限方面的限制,比方说保密系统或网络病毒,可能会影响网卡设备的工作状态,此时只要查杀干净病毒,或取消程序或软件对网卡权限的限制,就能恢复网卡设备运行状态。第三判断网卡自身是否存在硬件问题。打开系统设备管理器窗口,展开网络适配器节点,用鼠标右键单击目标网卡设备,进入对应设备属性对话框,选择“常规”标签,在对应标签页面中就能直观看到网卡设备是否有问题了。如果从里还不能识别出网卡究竞是否正常时,不妨通过加装一块正常网卡的方法,来判断旧网卡是否在质量方面存在问题。最后尝试用鼠标右键单击“本地连接”图标,执行快捷菜单中的“修复”命令,这样或许能解决一些网卡错误,从而恢复网卡的工作状态。第三步:通过专业线缆测试仪器,对物理线路的连通性进行测试,以此来判断网络线缆是否有断点,网卡水晶头是否接触不良。如果发现网络线缆有断点,必须要重新更换新的网络线缆。如果看到水晶头接触不好时,不妨选用质量较高的头,重新制作网络接头。第四步:要检查交换机的工作状态。在长时间工作后,交换机设备很容易出现老化现象,这时会引起连接到该交换机中的所有计算机上网不正常,所以观察其他计算机的上网状态,如果有多台计算机网卡数据收发异常,那十有八九是交换机问题,只要重新更换交换机即可。如果其他计算机上网正常,那不妨尝试换插一个交换端口,看看是否是端口模块有问题。有的时候,小小的灰尘也能引起交换机或网卡设备的性能下降,因此要加强设备的保养。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

Access Denied

Access Denied

Access Denied

You don't have permission to access "http://www.intel.cn/content/www/cn/zh/products/details/ethernet/700-network-adapters.html" on this server.

Reference #18.75051c78.1710414868.1a45dd4d

Access Denied

Access Denied

Access Denied

You don't have permission to access "http://www.intel.cn/content/www/cn/zh/products/details/ethernet/gigabit-network-adapters.html" on this server.

Reference #18.75051c78.1710414868.1a45dccb

网卡 - 维基百科,自由的百科全书

网卡 - 维基百科,自由的百科全书

跳转到内容

主菜单

主菜单

移至侧栏

隐藏

导航

首页分类索引特色内容新闻动态最近更改随机条目资助维基百科

帮助

帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科

搜索

搜索

创建账号

登录

个人工具

创建账号 登录

未登录编辑者的页面 了解详情

贡献讨论

目录

移至侧栏

隐藏

序言

1技术

2主機板內建網卡(LOM)

3知名厂商

4参见

开关目录

网卡

54种语言

العربيةБългарскиBrezhonegBosanskiCatalàČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiFrançaisGaeilgeGalegoעבריתHrvatskiMagyarBahasa IndonesiaItaliano日本語JawaҚазақша한국어КомиLëtzebuergeschLatviešuОлык марийМакедонскиBahasa MelayuNederlandsNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaСрпски / srpskiSvenskaKiswahiliதமிழ்ТоҷикӣTürkçeУкраїнськаاردوTiếng Việt

编辑链接

条目讨论

不转换

不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體

阅读编辑查看历史

工具

工具

移至侧栏

隐藏

操作

阅读编辑查看历史

常规

链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目

打印/导出

下载为PDF打印页面

在其他项目中

维基共享资源

维基百科,自由的百科全书

此條目没有列出任何参考或来源。 (2017年7月5日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。

网卡一块已经过时的ISA以太网网卡连接至主機板通过:

內置於主機板

PCI Express

USB

M.2

PCI

ISA

電腦網絡通过:

乙太網

快速以太網

千兆以太網

光纖

令牌環網

速度10 Mbit/s100 Mbit/s1 Gbit/s2.5 Gbit/s10 Gbit/s40 Gbit/s常见制造商BroadcomQualcomm AtherosIntelRealtek其他

主機板上的內建網路晶片:Realtek RTL8201CL

網路介面控制器(英語:network interface controller,NIC),又稱网络接口控制器,网络适配器(network adapter),网卡(network interface card),或區域網路接收器(LAN adapter),是一块被设计用来允许计算机在计算机网络上进行通讯的计算机硬件。由于其拥有MAC地址,因此属于OSI模型的第2层。它使得用户可以通过电缆或无线相互连接。每一个网卡都有一个被称为MAC地址的独一无二的48位序列号,它被写在卡上的一块ROM中。在网络上的每一个计算机都必须拥有一个独一无二的MAC地址。没有任何两块被生产出来的网卡拥有同样的地址。这是因为电气电子工程师协会(IEEE)负责为网络接口控制器销售商分配唯一的MAC地址。

网卡以前是作为扩展卡插到计算机总线上的,但是由于其价格低廉而且以太网标准普遍存在,大部分新的计算机都在主板上集成了网络接口。除非需要多接口,否则不再需要一块独立的网卡。甚至更新的主板可能含有内置的双网络(以太网)接口。

能够连接无线网络的网卡被称为无线网卡。

技术[编辑]

网卡使用一个特定的物理层和数据链路层标准,例如以太网或令牌环来实现通讯所需要的电路系统。这为一个完整的网络协议栈提供基础,使同一局域网中的小型计算机组以及通过路由协议连接的广域网,例如IP,都能够进行通讯。

有四种技术被用来传送数据,网络接口控制器可能使用其中的一种或多种。

轮询,即微处理器在程序控制下检查周边设备的状态。

程序化I/O,即微处理器通过将地址送到系统地址总线上来通知制定的周边设备。

中断驱动I/O,即当周边设备准备好传送数据时通知微处理器。

DMA,即智能周边设备通过控制系统总线来直接访问内存。这种方法减轻CPU的负荷,但是需要网卡上拥有一个独立的处理器。

一块网卡通常配有一个双绞线、光纖、BNC、AUI、HomePNA接口,其中後三者在現今已較少見,光纖則多用於伺服器。网络电缆通过这些接口与网卡连接。网卡上还有一些LED用来告诉用户网络是否正在工作,以及是否有数据正在传输。网卡通常可达到10/100/1000 Mbps(Mbit/s)。这意味着它们能够支持10、100或1000兆比特每秒的传输速率。

主機板內建網卡(LOM)[编辑]

主機板內建網路晶片(LAN On Motherboard, LOM)是將網路功能整合至主機板上的概念,其功能可以取代傳統的獨立網路介面卡(Network Interface Card, NIC)。

知名厂商[编辑]

3Com

Atheros/Qualcomm Atheros

AMD

ASIX Electronics [1] (页面存档备份,存于互联网档案馆)

Broadcom

Dell

Digital Equipment Corporation

D-Link

Intel

Marvell Technology Group

National Semiconductor

Netgear [2] (页面存档备份,存于互联网档案馆)

Novell

Realtek

VIA [3] (页面存档备份,存于互联网档案馆)

SiS

TP-Link

参见[编辑]

MAC地址

TCP Offload Engine (TOE)

主机总线适配器(HBA)

无线网络接口卡(WNIC)

以太网

吉比特以太网

路由器

网络引导

WOL

IPMP

查论编电子计算机基本部件输入设备

鍵盤

數字鍵盤

影像掃描器

显示卡

圖形處理器

麦克风

定点设备

数码绘图板

游戏控制器

光筆(英语:Light pen)

鼠标

光學

指点杆

触摸板

觸控式螢幕

轨迹球

盲文显示机

声卡

聲音處理器(英语:Sound chip)

摄像头

虛擬(英语:Softcam)

输出设备

顯示器

螢幕

盲文显示机

打印机

繪圖儀(英语:Plotter)

揚聲器(英语:Computer speakers)

声卡

显示卡

移动存储

磁碟組(英语:Disk pack)

软盘

光碟

CD

DVD

BD

闪存

記憶卡

闪存盘

机箱

中央处理器

微处理器

主板

記憶體

隨機存取

BIOS

數據存貯器

硬盘

固态硬盘

混合固态硬盘

電源供應器

開關模式電源

金屬氧化物半導體場效電晶體

功率

電壓調節模組

网卡

傳真數據機(英语:Fax modem)

擴充卡

接口(英语:Computer port (hardware))

以太网

FireWire

並列

序列

PS/2

USB

Thunderbolt

DisplayPort/HDMI/DVI/VGA

SATA

TRS

取自“https://zh.wikipedia.org/w/index.php?title=网卡&oldid=77009151”

分类:​網路硬體乙太網路隐藏分类:​自2017年7月缺少来源的条目含有英語的條目

本页面最后修订于2023年4月28日 (星期五) 08:09。

本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。

隐私政策

关于维基百科

免责声明

行为准则

开发者

统计

Cookie声明

手机版视图

开关有限宽度模式

一文带你全方位了解网卡 - 知乎

一文带你全方位了解网卡 - 知乎切换模式写文章登录/注册一文带你全方位了解网卡通信产品推荐官史上最强通信产品推荐官-飞速(FS),为您推荐最优产品方案。网卡,即网络接口卡(network interface card),也叫NIC卡,是一种允许网络连接的计算机硬件设备。网卡应用广泛,市场上有许多不同种类,如 PCIe网卡,服务器网卡。本文将对网卡的基础、功能、元件与类型进行全方位讲解。什么是网卡?在正式介绍网卡的定义之前,有必要了解一下网卡的其他名称。网卡的名称有很多,比如网络接口控制器、网络接口卡、以太网卡、局域网卡、网络适配器或网络适配器卡等。尽管名称各异,它们都是指能使计算机和服务器等网络设备相互连接的电路板。内嵌式网卡在大多数计算机和一些网络服务器中都很常见,除此之外,还可以将服务器网卡等插入设备的扩展槽中。图1:什么是网卡网卡的功能网卡的定义很简单,但具体有些什么功能呢?网卡作为TCP/IP层的接口,可以在物理层传输信号,在网络层传输数据包。无论位于哪个层,它都充当计算机或服务器和数据网络之间的中间媒介。当用户发送一个web页面请求时,网卡从用户设备中获取数据,并将其发送到网络服务器,然后接收所需的数据展示给用户。网卡的构造网卡一般由一个控制器、一个boot ROM槽、一/多个网卡端口、一个主板接口、LED指示灯、一个支架和一些其他电子元件组成,每个部件都有其独特的功能:控制器:控制器就像一个微型CPU,用来处理接收到的数据。控制器作为网络适配器的核心部分,直接决定着网络适配器的性能。boot ROM槽:网卡上的这个槽能启用boot ROM功能,boot ROM可使无磁盘工作站连接到网络,在提高安全性的同时降低硬件成本。网卡端口:通常情况下,该端口直接与以太网线或光模块连接,产生和接收网线或光纤跳线上的电信号。总线接口:该接口位于电路板的一侧,通过插入扩展槽连接网卡和计算机或服务器。LED指示灯:指示灯用于帮助用户识别网卡的工作状态,确认网络是否连接,数据是否传输。支架:市面上有两种类型的支架,一个是全长12cm的全高支架,另一个是长8cm的半高支架。这个支架可以帮助用户将网卡固定在计算机或服务器的扩展槽中。图2:网卡内部结构网卡的种类根据主机接口、传输速度、应用领域等不同,网卡可分为以下几个不同的类型。基于网络连接方式分类基于网卡访问网络的方式,可将网卡分为有线网卡和无线网卡。顾名思义,有线网卡通常需要用一根跳线(如以太网跳线和光纤跳线)将一个节点连接到网络;无线网卡通常带有一个小天线,利用无线电波与接入点进行通信,从而接入无线网络。基于总线接口类型分类ISA总线网卡:ISA总线发布于1981年,是IBM标准兼容的总线结构。由于9Mbps的网卡速度较慢,ISA总线接口逐渐被淘汰,现在市场上很少见。PCI总线网卡:PCI发布于19世纪90年代,替代了以前的ISA标准。它的固定宽度为32位(数据传输速率为133MB/s)和64位(数据传输速率为266MB/s)。这种类型的网卡最初用于服务器,后来逐渐应用于电脑。如今大多数电脑没有扩展卡,而是采用嵌入式网卡。因此,PCI总线网卡已被其他总线接口取代,如PCI- X或USB接口。PCI-X网卡:PCI- X是一种增强的PCI总线技术。它支持64位运行,最高可达1064MB/s。多数情况下PCI- X的插槽与PCI网卡是向后兼容的。PCIe网卡:PCIe是一种最新的标准,在计算机和服务器主板上很流行。PCIe网卡现在有五个版本,分别支持不同的速度。USB网卡:USB总线是一种外部总线标准。它有三个版本,具有不同的传输速率,可以与各种设备一起工作。基于接口类型的分类根据连接线材的不同,市场上有四种类型的网卡端口。RJ-45端口用于连接双绞线(如Cat5和Cat6), AUI端口用于粗同轴电缆(如AUI电缆),BNC端口用于细同轴电缆(如BNC电缆),光端口用于模块(如10G/25G光模块)。基于传输速度的分类基于不同的速度,网卡有10Mbps,100Mbps, 10/100Mbps自适应卡,1000Mbps、10G、25G甚至更高速度的网卡。10Mbps、100Mbps和10/100Mbps自适应网卡适用于小型局域网、家庭或办公室。1000Mbps网卡可为快速以太网提供更高的带宽。10Gb/25Gb网卡以及更高速度的网卡则受到大企业与数据中心的欢迎。基于应用领域的分类电脑网卡:现在大多数新计算机的主板都内置了网卡,因此不需要单独的局域网卡。它通常具有10/100Mbps和1Gbps的速度,并允许一台PC与其他PC或网络通信。服务器网卡:服务器网卡的主要功能是管理和处理网络流量。与普通计算机网卡相比,服务器网卡要求更高的数据传输速度,如10G、25G、40G甚至100G。另外,服务器网卡的CPU占用率很低,因为它有一个特殊的网络控制器,可以减轻CPU的负担。为满足用户对服务器网卡速度的不同需求,飞速(FS)推出了10G PCIe网卡和25G/40G网卡,这些网卡使用英特尔控制器,支持多核处理器与服务器和网络虚拟化的优化。结论网卡的性能直接影响整个网络的数据传输速率,因此,无论您是在寻找家用网卡,还是为小型企业或数据中心选择服务器网卡,在购买网卡之前,有必要了解网卡是什么,网卡的组件和功能以及网卡的类型。要了解更多关于如何购买网卡的知识,可以参考飞速(FS)资讯上《购买光纤网卡时,我们该注意什么?》一文。发布于 2021-07-16 17:28网卡计算机网络网络通信​赞同 40​​4 条评论​分享​喜欢​收藏​申请

网卡_百度百科

度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心网卡播报讨论上传视频计算机硬件收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。网卡是一块被设计用来允许计算机在计算机网络上进行通讯的计算机硬件。由于其拥有MAC地址,因此属于OSI模型的第1层和2层之间。它使得用户可以通过电缆或无线相互连接。每一个网卡都有一个被称为MAC地址的独一无二的48位串行号,它被写在卡上的一块ROM中。在网络上的每一个计算机都必须拥有一个独一无二的MAC地址。没有任何两块被生产出来的网卡拥有同样的地址。这是因为电气电子工程师协会(IEEE)负责为网络接口控制器(网卡)销售商分配唯一的MAC地址。中文名网卡外文名NIC (Network Interface Controller)别    名网络适配器、网络接口卡作    用连接计算机与外界局域网目录1简介2主要功能3属性设置4网卡驱动▪END设备驱动程序的装载▪启动 END 设备▪网络数据包的接收▪网络数据包的发送5分类6双网卡切换7有线网卡8无线网卡9虚拟网卡10故障及解决方法▪网络连接不稳定▪驱动程序出现的故障▪磁场导致故障▪网卡数据收发异常简介播报编辑网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。 [5]网卡以前是作为扩展卡插到计算机总线上的,但是由于其价格低廉而且以太网标准普遍存在,大部分新的计算机都在主板上集成了网络接口。这些主板或是在主板芯片中集成了以太网的功能,或是使用一块通过PCI (或者更新的PCI-Express总线)连接到主板上的廉价网卡。除非需要多接口或者使用其它种类的网络,否则不再需要一块独立的网卡。甚至更新的主板可能含有内置的双网络(以太网)接口。在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据包时,它就由协议栈向下交给网卡组装成帧后发送到局域网。随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽各个厂家生产的网卡种类繁多,但其功能大同小异。主要功能播报编辑1、数据的封装与解封发送时将上一层传递来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层2、链路管理主要是通过CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议来实现3、数据编码与译码即曼彻斯特编码与译码。其中曼彻斯特码,又称数字双向码、相位编码(PE),是一种常用的二元码线路编码方式之一,被物理层使用来编码一个同步位流的时钟和数据。在通信技术中,用来表示所要发送比特 流中的数据与定时信号所结合起来的代码。 常用在以太网通信,列车总线控制,工业总线等领域。属性设置播报编辑通过高级网卡选项可以提升网络性能:有效利用CPU:巨型帧vs.卸载功能如果服务器性能低下,那么可能是由于网络负载较大。标准的以太网数据包大小为1518个字节,大多数文件被拆分为成百上千甚至上百万个数据包或者帧。这些小的数据包通过网络传输,和众多节点共享网络带宽,但是数据帧的发送与接收会带来CPU开销。大多数网卡支持巨型帧,这意味着能够处理高达9000字节的数据包或者帧。巨型帧在每个数据包中包括更多的数据,因此网络中需要传输的数据包数量就变小了。吞吐量提升意味着开销——数据包头与其他数据包内容——以及CPU开销减少了。巨型帧肯定存在缺点。管理员必须对网络中的所有节点进行配置才能支持巨型帧的传输。巨型帧并不是IEEE标准的一部分,因此不同的网卡配置的巨型帧大小有所不同。为了在节点之间高效传输巨型帧要做一些实验。更大的数据包可能会增加某些负载的延迟,因为其他节点要等更长的时间才能使用带宽,请求与发送被丢弃或者被破坏的数据包也需要花更长的时间。IT专业人员可能放弃巨型帧而使用具有LSO以及LRO功能的网卡。LSO和LRO允许CPU通过网卡传输更多数量的数据,而且基本上与巨型帧提供了相同的CPU性能。通行能力:可调整的帧间距vs.以太网升级以太网在每发送一个数据包后都要等一段时间,这称之为帧间距。这为其他网络节点占用带宽并发送数据包提供了机会。帧间距等于发送96个数据位的时间。例如,1Gb以太网使用标准的0.096ms的帧间距,10Gb以太网的帧间距为0.0096ms。利用这一固定的数据包传输之间的间距并非总是有效而且在网络负载较大的情况下可能会降低网络性能。支持自适应帧间距的网卡能够基于网络负载动态调整帧间距,这有可能提升网络性能。除非接近网络带宽,否则调整帧间距通常不会提升网络性能。全方位的网络性能基准测试能够展现网络使用模式。如果以太网连接频繁达到带宽上限,那么升级到速度更快的以太网或者使用网卡绑定而非调整帧间距将能够提升网络性能。限制CPU中断,提升CPU性能当数据包在网络中传输时,网卡会产生CPU中断。以太网速度越快,CPU中断的频率也就越高,CPU必须更多地关注网络驱动器以及其他处理数据包的软件。如果流量起伏不定,CPU性能可能会变得不稳定。支持人为中断节流的网卡能够减少CPU中断频率,将CPU从网卡中放出来,很可能能够提升CPU性能。中断限制越多并不一定越好。过高的中断限制可能会降低CPU的响应能力;CPU将需要花更长的时间来处理所有正在产生的中断。当高速小数据包近乎实时地到达时,限制中断将会降低性能。在多种模式下对网络以及CPU性能进行测试直到能够建立起充分的系统响应能力,产生平滑的CPU中断。还可以考虑支持TCP/IP卸载功能的网卡。这些网卡能够在线处理众多CPU密集型工作任务,同时减少对CPU的中断请求。优先处理对时间敏感的数据类型:启用包标记对事件敏感的数据类型比如VoIP或者视频通常按照高优先级流量对待,但是网络对所有数据包一视同仁。采用数据包标记,被标记的数据包能够被分到操作系统设置的流量队列中,在处理其他低优先级的数据包之前先处理高优先级的VoIP以及视频数据包。包标记有助于QoS战略,而且是很多VLAN部署的一个必要组成部分。如果网络性能低于已定义的基准,可以对网卡进行调整,务必对服务器以及网卡进行基准测试后再对配置进行更改。这些推荐的网卡调整不会带来显著的性能提升,但是也不受预算的限制。随时间变化评估并观察网络性能,检查任何意想不到的后果,比如提升了某个工作负载性能却降低了其他工作负载的性能。网卡驱动播报编辑由于驱动功能层的存在,协议驱动程序和网卡驱动程序之间相互独立,大大简化了网络设备增加和网络组件扩展的复杂度。网络协议栈主要支持增强型的网络设备驱动 (Enhanced Network Driver)。 [1]END设备驱动程序的装载END设备驱动程序的装载主要就是完成END设备驱动 程序与驱动功能抽象层的挂接,使得网络协议栈实现对 END设备的控制。具体过程包括: 初始化网卡和PHY设备,配置网卡和 PHY 设备的通信参数等;为网卡控制结构分配空间同时初始化END_OBJ结构,END_OBJ结构主要包括网卡控制结构以及与网络协议栈相关的参数信息;对网卡驱动对应的参数串进行解析和处理;为接收数据分配空间,保证接收数据的存放;通过配置END_OBJ结构中的NET_FUNCS 参数实现网卡驱动与网络协议栈的挂接。 [1]启动 END 设备END设备的启动过程主要包括中断处理程序的挂接和使 能网卡中断。对于网卡设备来说,其处理数据的方式可分为中断和轮询两种工作模式,在END设备启动过程中,将接收数据和发送数据均设置为中断模式,并挂接接收和发送数据的中断处理程序,最后使能网卡中断、接收和发送中断,则可完成END设备的启动。 [1]网络数据包的接收对于网络数据包的接收来说,操作系统的网络协议栈无需网卡驱动实现对网络数据包的处理。当网卡设备接 收到数据后,其会产生一个接收中断,在接收中断处理程序中, 程序会调用netJobAdd函数启动一个任务程序将网卡设备接收到的数据传递给驱动功能抽象层,网络协议栈通过驱动功能抽象层的接收函数获取到网络数据包并进行相应的数据处理。此处利用netJobAdd 函数可以减少接收中断的处理时间,提高网络数据的接收能力。 [1]网络数据包的发送对于网络数据包的发送来说,当网络协议栈发送数据时,其会将数据放置到缓冲区中,并通过调用驱动功能抽象层的发送函数将缓冲区中的数据发送给网卡设备,网卡设备接收到数据后就将其置于发送缓冲区中等待数据的发送。 [1]分类播报编辑根据网卡所支持的物理层标准与主机接口的不同,网卡可以分为不同的类型,如以太网卡和令牌环网卡等。根据网卡与主板上总线的连接方式、网卡的传输速率和网卡与传输介质连接的接口的不同,网卡分为不同的类型。按照网卡支持的计算机种类分类,主要分为标准以太网卡和PCMCIA网卡:标准以太网卡用于台式计算机联网,而PCMCIA网卡用于笔记本电脑。按照网卡支持的传输速率分类,主要分为10Mbps网卡、100Mbps网卡、10/100Mbps自适应网卡和1000Mbps网卡四类:根据传输速率的要求,10Mbps和100Mbps网卡仅支持10Mbps和100Mbps的传输速率,在使用非屏蔽双绞线UTP作为传输介质时,通常10Mbps网卡与3类UTP配合使用,而100Mbps网卡与5类UTP相连接。10/100Mbps自适应网卡是由网卡自动检测网络的传输速率,保证网络中两种不同传输速率的兼容性。随着局域网传输速率的不断提高,1000Mbps网卡大多被应用于高速的服务器中。按网卡所支持的总线类型分类,主要可以分为ISA、EISA、PCI等:由于计算机技术的飞速发展,ISA总线接口的网卡的使用越来越少。EISA总线接口的网卡能够并行传输32位数据,数据传输速度快,但价格较贵。PCI总线接口网卡的CPU占用率较低,常用的32位PCI网卡的理论传输速率为133Mbps,因此支持的数据传输速率可达100Mbps。双网卡切换播报编辑为了使2块网卡实现高效双冗余备份,必须保证这2块网卡具有相同的物理地址和IP地址这样 对于上层应用系统而言,系统中呈现“单网卡”的特征;反之,当系统中一块网卡切换到另一块网卡工作时,如果IP地址发生变化,则系统无法正常接收和发送数据。如果IP地址不改变,而物理地址改变,则会引起协议栈中ARP绑定表的变化,而重新对应ARP绑定表中IP地址与网卡物理地址的关系会延长两个网卡之间的切换时间。 [2]然而,每块网卡的物理地址在全世界范围内是唯一的,它保存在网卡的PROM中。为了使2块网卡具有相同的物理地址,在网卡初始化时,从PROM中读出其中一块网卡的物理地址,将该物理地址的内容写入另一 块网卡物理地址寄存器和数据结构变量中,在此情况下,这2块网卡就具有完全相同的物理地址了。 [2]有线网卡播报编辑光纤网卡,指的是光纤以太网适配器,简称光纤网卡,学名Fiber Ethernet Adapter.传输的是以太网通信协议,一般通过光纤线缆与光纤以太网交换机连接。按传输速率可以分为100Mbps、1Gbps、10Gbps,按主板插口类型可分为PCI、PCI-X、PCI-E(x1/x4/x8/x16)等,按接口类型分为LC、SC、FC、ST等。LC接口光纤网卡的含义:LC接口名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC等几种类型。SC接口,由于其操作的便利性,得到广泛运用,比如光纤到桌面(FTTD)的广泛运用,使得SC接口光纤网卡得到普及。SC接口光纤网卡的含义:SC接口光纤网卡名字的由来是根据光纤模块的接口定义而命名的。光纤模块按其接口可以分为:SC、LC、ST、FC、MTRJ等几种类型。由于SC接口光纤操作的便利性,从而使得带SC接口光模块的网卡,得到广泛运用,而经常被人们所提起,因为也诞生了:SC接口光纤网卡这个名词。光纤端口工作波长及传输距离:光纤接口 网络媒介 工作波长 工作距离SC/APC 单纤,单模 波长1310/1550nm 10/20KMSC/PC 双纤,单模 波长1310nm 10/20/40KMSC/PC 双纤,多模 波长850nm 550MSFP光纤网卡含义:SFP是 (Small Form-factor Pluggables)可以简单的理解为GBIC的升级版本。SFP模块(体积比GBIC模块减少一半,可以在相同面板上配置多出一倍以上的端口数量。由于SFP模块在功能上与GBIC基本一致,因此,也被有些交换机厂商称为小型化GBIC(Mini-GBIC)。SFP光纤网卡,故名思议,就是一种小型可热拨插模块的光纤网卡。在网卡集成SFP插槽,用户可根据实际需要,插入多模或者单模SFP光模块,而且可以根据实际传输距离,插入不同传统距离的光模块;而不需要根据网卡本身。这就给用户很大的选择空间。无线网卡播报编辑无线网卡用于连接无线网络,就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份,只可惜速度相较于有线网络略逊且延迟较大。无线网卡是终端无线网络的设备,是无线局域网的无线覆盖下通过无线连接网络进行上网使用的无线终端设备。具体来说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,如果你在家里或者所在地有无线路由器或者无线AP(Access Point,无线接入点)的覆盖,就可以通过无线网卡以无线的方式连接无线网络可上网。无线网卡的工作原理是微波射频技术,笔记本有WIFI、LTE等几种无线数据传输模式来上网,后者由移动网络运营商来实现,前者三大运营商有所参与,但大多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。无线上网遵循802.11标准,通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据。按照IEEE802.11协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)。在两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来实现无线网络的CSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信息放在数据包的前面。IEEE802.11协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是则上交,否则丢弃。如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送;否则,暂不发送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发。无线网卡标准:1.IEEE 802.11a:使用5GHz频段,传输速度54Mbps,与802.11b不兼容2.IEEE 802.11b :使用2.4GHz频段,传输速度11Mbps3.IEEE 802.11g:使用2.4GHz频段,传输速度54Mbps4.IEEE 802.11n :使用2.4GHz频段或5Ghz频段,传输速度可达300Mbps5.IEEE 802.11ac:使用2.4GHz频段或5Ghz频段传输速度最大可达1.73Gbps6.IEEE 802.11ax:使用2.4GHz频段、5Ghz频段或6Ghz频段,最高速度可达11 GbpsWIFI6早期对WIFI联盟新命名方式的图解WIFI联盟已经将802.11a/b/g命名为WIFI3,802.11n命名为WIFI4,802.11ac命名为WIFI5,802.11ax命名为WIFI6,这种命名方式能更好的方便消费者了解产品支持的WIFI技术标准,从而方便消费者更好的选择WIFI产品。无线网卡的作用、功能跟普通电脑网卡一样,是用来连接到局域网上的。它只是一个信号收发的设备,只有在找到上互联网的出口时才能实现与互联网的连接,所有无线网卡只能局限在已布有无线局域网的范围内。无线网卡就是不通过有线连接,采用无线信号进行连接的网卡。无线网卡可以根据不同的接口类型来区分,第一种是USB无线网卡,是最常见的;第二种是台式机专用的PCI/PCI-E接口无线网卡;第三种是笔记本电脑内置的MINI-PCIE/M.2 1216接口无线网卡。就如上面所说,我们光有无线网卡是无法连接无线网络,还必须有无线路由器或无线AP。无线网卡就好比是接收器,无线路由相当于发射器。其实还是需要有线的Internet线路接入到无线猫上,再将信号转化为无线的信号发射出去,由无线网卡接收。无线网卡最先进的标准是IEEE 802.11ax,它大幅提升了无线局域网竞争力。随着无线局域网标准、技术快速发展,产品逐渐成熟,无线局域网的应用也日益丰富。越来越多的家庭用户开始使用无线网络,许多企业也纷纷在自己的办公大楼内布设无线局域网,同时,电信运营商对无线局域网也给予了极大关注,无论是在机场、酒店、咖啡厅等公共区域铺设公众无线网络,给大家提供方便的无线上网。虚拟网卡播报编辑随着嵌入式设备对网络需求的增长,物联网技术通过传 感器获取大量数据,这些数据通过嵌入式网关进行处理,这就涉及到各种网络通信算法。但是通常嵌入式软硬件开发时间是不均衡的。如果网络通信算法已经完成。而硬件仍然处于调试状态,导致网络通信算法不能够及时验证,则开发效率降低。虚拟网卡测试平台提供了不需要具体硬件参与,就能完成多网卡设备的通信算法验证,降低了软件开发周期。 并且通过分析虚拟网卡接收和发送的数据包,进而对算法的准确性和性能进行测试。 [3]故障及解决方法播报编辑网络连接不稳定在网卡工作正常的情况下,网卡的指示灯是长亮的(而在传输数据时,会快速地闪烁)。如果出现时暗时明,且网络连接老是不通的情况,最可能的原因就是网卡和PCI插槽接触不良。和其他PCI设备一样,频繁拔插网卡或移动电脑时,就很容易造成此类故障,重新拔插一下网卡或换插到其他PCI插槽都可解决。此外,灰尘多、网卡金手指被严重氧化,网线接头损坏也会造成此类故障。只要清理一下灰尘、用报纸把“金手指"擦亮即可解决。 [4]驱动程序出现的故障网卡和其他硬件一样,驱动程序不完善也极易引起故障,比如果用瑞显(Realtek)RT18469芯片的网卡,在Windows下就经常会出现Net-BIOSTCP/IP方面的错误。棉驱动更新到最新版后,此类问题就会迎刃而解。所以,当网卡出现一些不明缘由的故障时,可以到“驱动之家”等专业网站更新驱动来解决(推荐大家优先使用经过微软WHQL认证的驱动,通过此认证的驱动程序与Windows系统的兼容性是最好的)。一般在排除硬件,网络故障前提下,升级或重装驱动可以解决很多莫名故障。如果网卡故障是发生在驱动程序更新之后的话,可以用网卡自带的驱动程序来恢复一下。 [4]磁场导致故障网卡与其它电子产品一样。很容易受到磁场干扰而发生故障。所以,网卡和网络布线时,就要采用屏蕺性强的网线和网卡设备,同时尽可能地避开微波炉、电冰箱、电视机等大功率强磁场设备,降低网卡故障的几率。 [4]网卡数据收发异常第一步:依次单击“开始”、“控制面板”命令,弹出系统控制面板窗口,用 鼠标双击“网络和共享中心”图标,点击其后界面中的“管理网络连接”按钮,进 入网络连接列表窗口,右击“本地连接”图标,执行快捷菜单中的“属性”命令, 打开本地连接属性对话框,选中TCP/IPv4协议选项,点击“属性”按钮,切换到对应协议属性对话框,看看这里的IP地址等参数是否设置正确,如果用户输入了错误的IP地址,或者对网络参数配置不熟悉,就很容易引起网络故障。设置好了网络参数,或许故障现象就能自动消失了。第二步:检查网卡设备工作状态是否正常。首先用手触摸网卡附近是否存在温度过高现象,在计算机长时间工作的情况下,如果计算机散热性能不好的话,很容易使网卡发生性能下降现象。当确认由于温度过高引起网卡工作不正常时,只要暂时关闭计算机一段时间,就能解决问题。其次检查一些应用程序或软件系统有没有对网卡设备进行操作权限方面的限制,比方说保密系统或网络病毒,可能会影响网卡设备的工作状态,此时只要查杀干净病毒,或取消程序或软件对网卡权限的限制,就能恢复网卡设备运行状态。第三判断网卡自身是否存在硬件问题。打开系统设备管理器窗口,展开网络适配器节点,用鼠标右键单击目标网卡设备,进入对应设备属性对话框,选择“常规”标签,在对应标签页面中就能直观看到网卡设备是否有问题了。如果从里还不能识别出网卡究竞是否正常时,不妨通过加装一块正常网卡的方法,来判断旧网卡是否在质量方面存在问题。最后尝试用鼠标右键单击“本地连接”图标,执行快捷菜单中的“修复”命令,这样或许能解决一些网卡错误,从而恢复网卡的工作状态。第三步:通过专业线缆测试仪器,对物理线路的连通性进行测试,以此来判断网络线缆是否有断点,网卡水晶头是否接触不良。如果发现网络线缆有断点,必须要重新更换新的网络线缆。如果看到水晶头接触不好时,不妨选用质量较高的头,重新制作网络接头。第四步:要检查交换机的工作状态。在长时间工作后,交换机设备很容易出现老化现象,这时会引起连接到该交换机中的所有计算机上网不正常,所以观察其他计算机的上网状态,如果有多台计算机网卡数据收发异常,那十有八九是交换机问题,只要重新更换交换机即可。如果其他计算机上网正常,那不妨尝试换插一个交换端口,看看是否是端口模块有问题。有的时候,小小的灰尘也能引起交换机或网卡设备的性能下降,因此要加强设备的保养。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

一文带你全方位了解网卡 - 知乎

一文带你全方位了解网卡 - 知乎切换模式写文章登录/注册一文带你全方位了解网卡通信产品推荐官史上最强通信产品推荐官-飞速(FS),为您推荐最优产品方案。网卡,即网络接口卡(network interface card),也叫NIC卡,是一种允许网络连接的计算机硬件设备。网卡应用广泛,市场上有许多不同种类,如 PCIe网卡,服务器网卡。本文将对网卡的基础、功能、元件与类型进行全方位讲解。什么是网卡?在正式介绍网卡的定义之前,有必要了解一下网卡的其他名称。网卡的名称有很多,比如网络接口控制器、网络接口卡、以太网卡、局域网卡、网络适配器或网络适配器卡等。尽管名称各异,它们都是指能使计算机和服务器等网络设备相互连接的电路板。内嵌式网卡在大多数计算机和一些网络服务器中都很常见,除此之外,还可以将服务器网卡等插入设备的扩展槽中。图1:什么是网卡网卡的功能网卡的定义很简单,但具体有些什么功能呢?网卡作为TCP/IP层的接口,可以在物理层传输信号,在网络层传输数据包。无论位于哪个层,它都充当计算机或服务器和数据网络之间的中间媒介。当用户发送一个web页面请求时,网卡从用户设备中获取数据,并将其发送到网络服务器,然后接收所需的数据展示给用户。网卡的构造网卡一般由一个控制器、一个boot ROM槽、一/多个网卡端口、一个主板接口、LED指示灯、一个支架和一些其他电子元件组成,每个部件都有其独特的功能:控制器:控制器就像一个微型CPU,用来处理接收到的数据。控制器作为网络适配器的核心部分,直接决定着网络适配器的性能。boot ROM槽:网卡上的这个槽能启用boot ROM功能,boot ROM可使无磁盘工作站连接到网络,在提高安全性的同时降低硬件成本。网卡端口:通常情况下,该端口直接与以太网线或光模块连接,产生和接收网线或光纤跳线上的电信号。总线接口:该接口位于电路板的一侧,通过插入扩展槽连接网卡和计算机或服务器。LED指示灯:指示灯用于帮助用户识别网卡的工作状态,确认网络是否连接,数据是否传输。支架:市面上有两种类型的支架,一个是全长12cm的全高支架,另一个是长8cm的半高支架。这个支架可以帮助用户将网卡固定在计算机或服务器的扩展槽中。图2:网卡内部结构网卡的种类根据主机接口、传输速度、应用领域等不同,网卡可分为以下几个不同的类型。基于网络连接方式分类基于网卡访问网络的方式,可将网卡分为有线网卡和无线网卡。顾名思义,有线网卡通常需要用一根跳线(如以太网跳线和光纤跳线)将一个节点连接到网络;无线网卡通常带有一个小天线,利用无线电波与接入点进行通信,从而接入无线网络。基于总线接口类型分类ISA总线网卡:ISA总线发布于1981年,是IBM标准兼容的总线结构。由于9Mbps的网卡速度较慢,ISA总线接口逐渐被淘汰,现在市场上很少见。PCI总线网卡:PCI发布于19世纪90年代,替代了以前的ISA标准。它的固定宽度为32位(数据传输速率为133MB/s)和64位(数据传输速率为266MB/s)。这种类型的网卡最初用于服务器,后来逐渐应用于电脑。如今大多数电脑没有扩展卡,而是采用嵌入式网卡。因此,PCI总线网卡已被其他总线接口取代,如PCI- X或USB接口。PCI-X网卡:PCI- X是一种增强的PCI总线技术。它支持64位运行,最高可达1064MB/s。多数情况下PCI- X的插槽与PCI网卡是向后兼容的。PCIe网卡:PCIe是一种最新的标准,在计算机和服务器主板上很流行。PCIe网卡现在有五个版本,分别支持不同的速度。USB网卡:USB总线是一种外部总线标准。它有三个版本,具有不同的传输速率,可以与各种设备一起工作。基于接口类型的分类根据连接线材的不同,市场上有四种类型的网卡端口。RJ-45端口用于连接双绞线(如Cat5和Cat6), AUI端口用于粗同轴电缆(如AUI电缆),BNC端口用于细同轴电缆(如BNC电缆),光端口用于模块(如10G/25G光模块)。基于传输速度的分类基于不同的速度,网卡有10Mbps,100Mbps, 10/100Mbps自适应卡,1000Mbps、10G、25G甚至更高速度的网卡。10Mbps、100Mbps和10/100Mbps自适应网卡适用于小型局域网、家庭或办公室。1000Mbps网卡可为快速以太网提供更高的带宽。10Gb/25Gb网卡以及更高速度的网卡则受到大企业与数据中心的欢迎。基于应用领域的分类电脑网卡:现在大多数新计算机的主板都内置了网卡,因此不需要单独的局域网卡。它通常具有10/100Mbps和1Gbps的速度,并允许一台PC与其他PC或网络通信。服务器网卡:服务器网卡的主要功能是管理和处理网络流量。与普通计算机网卡相比,服务器网卡要求更高的数据传输速度,如10G、25G、40G甚至100G。另外,服务器网卡的CPU占用率很低,因为它有一个特殊的网络控制器,可以减轻CPU的负担。为满足用户对服务器网卡速度的不同需求,飞速(FS)推出了10G PCIe网卡和25G/40G网卡,这些网卡使用英特尔控制器,支持多核处理器与服务器和网络虚拟化的优化。结论网卡的性能直接影响整个网络的数据传输速率,因此,无论您是在寻找家用网卡,还是为小型企业或数据中心选择服务器网卡,在购买网卡之前,有必要了解网卡是什么,网卡的组件和功能以及网卡的类型。要了解更多关于如何购买网卡的知识,可以参考飞速(FS)资讯上《购买光纤网卡时,我们该注意什么?》一文。发布于 2021-07-16 17:28网卡计算机网络网络通信​赞同 40​​4 条评论​分享​喜欢​收藏​申请